复平面

复数Z=a+bi和实数对(a,b)一样可以和坐标平面上的一点建立一一对应关系,这样与全体复数建立了一一对应关系的坐标平面叫做复数平面,
简称复平面(Complex plane),又叫高斯平面.
复平面的横轴上的点对应所有实数,故称实轴,纵轴上的点(原点除外)对应所有纯虚数,故称虚轴.
除未塞尔(1745-1817),阿工(1768-1822)的工作外,科兹(1707-1783)棣美弗(1667-1754),欧拉 (1707-1783),范德蒙(1735-1796),也曾认识到平面上的点可与复数一一对应,这一点从他们把二项方程 的根看作一个正多边形的顶点一事获得证实.
但是,在这方面高斯的贡献是十分重要的,他的著名代数学基本定理是在假设坐标平面上的点与复数可以 一一对应的前提下推出的.
1831年,高斯在《哥庭根学报》上详细说明了复数 a+bi表示成平面上的一个点(a,b).从而明确了复平面 的概念,他又将表示平面点的直角坐标与极坐标加以综合,统一于表示同一复数的二种表示形式——复数的代 数形式及三角形式之中.高斯还给出了「复数」这个名称,由于高斯的卓越贡献,后人常称复数平面为高斯平面.