统计推断

统计推断[statistical inference] 根据带随机性的观测数据(样本)以及问题的条件和假定(模型),而对未知事物作出的,以概率形式表述的推断。它是数理统计学的主要任务,其理论和方法构成数理统计学的主要内容。统计推断的一个基本特点是:其所依据的条件中包含有带随机性的观测数据。以随机现象为研究对象的概率论,是统计推断的理论基础。在数理统计学中,统计推断问题常表述为如下形式:所研究的问题有一个确定的总体,其总体分布未知或部分未知,通过从该总体中抽取的样本(观测数据)作出与未知分布有关的某种结论。例如,某一群人的身高构成一个总体,通常认为身高是服从正态分布的,但不知道这个总体的均值,随机抽部分人,测得身高的值,用这些数据来估计这群人的平均身高,这就是一种统计推断形式,即参数估计。若感兴趣的问题是“平均身高是否超过1.7(米)”,就需要通过样本检验此命题是否成立,这也是一种推断形式,即假设检验。由于统计推断是由部分(样本)推断整体(总体),因此根据样本对总体所作的推断,不可能是完全精确和可靠的,其结论要以概率的形式表达。统计推断的目的,是利用问题的基本假定及包含在观测数据中的信息,作出尽量精确和可靠的结论。
《统计推断》图书信息
版权信息作者: (美)卡塞拉(Casella,G.),(美)贝耶(Berger,R.L.) 著
出 版 社:机械工业出版社
出版时间: 2004-2
字数: 824000
页数: 660
开本: 16
纸张: 胶版纸
I S B N : 9787111109457
包装: 平装
定价:¥39.00
内容简介本书从概率论的基础开始,通过例子与习题的旁征博引,引进了大量近代统计处理的新技术和一些国内同类教材中不能见而广为使用的分布。其内容包括工科概率论入门、经典统计和现代统计的基础,又加进了不少近代统计中数据处理的实用方法和思想,例如:Bootstrap再抽样法、刀切(Jackknife)估计、EM算法、Logistic回归、稳健(Robust)回归、Markov链、Monte Carlo方法等。它的统计内容与国内流行的教材相比,理论较深,模型较多,案例的涉及面要广,理论的应用面要丰富,统计思想的阐述与算法更为具体。本书可作为工科、管理类学科专业本科生、研究生的教材或参考书,也可供教师、工程技术人员自学之用。
目录出版说明
序
1 Probability Theory
1.1 Set Theory
1.2 Basics of Probability Theory
1.3 Conditional Probability and Independence
1.4 Random Variables
1.5 Distribution FunCtions
1.6 Density and Mass Functions
1.7 Exercises
1.8 Miscellanea
2 Transformations and Expectations
2.1 Distributions of Functions of a Random Varible
2.2 Expected Values
2.3 Moments and Moment Generating Functions
2.4 Differentiating Under an Integral Sign
2.5 Exercises
2.6 Miscellanea
3 Common Families of Distributions
3.1 Introduction
3.2 Discrete Distributions
3.3 Continuous Distributions
3.4 Exponential Families
3.5 Location and Scale Families
3.6 Inequalities and Identities
3.7 Exercises
3.8 Miscellanea
4 Multiple Random Variables
4.1 Joint and Marginal Distributions
4.2 Conditional Distributions and Independence
4.3 Bivariate Transformations
4.4 Hierarchical Models and Mixture Distributions
4.5 Covariance and Correlation
4.6 Multivariate and Correlation
4.7 Inequalities
4.8 Exercises
4.9 miscellanea
5 Properties of a Random Sample
……
6 Principles of Data Reduction
7 Point Estimation
8 Hypothesis Testing
9 Interval Estimation
10 Asymptotic Evaluations
11 Analysis of Variance and Regression
12 Regression Models
Appendix:Computer Algebra
Table of Common Distributions
References
Author Index
Subject Index