余切丛

王朝百科·作者佚名  2010-01-31  
宽屏版  字体: |||超大  

微分几何中,流形的余切丛是流形每点的切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为标准坐标系。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密尔顿函数;这样余切丛可以理解为哈密尔顿力学讨论的相空间。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有