切触几何
数学上,切触几何是研究流形上的完全不可积超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶层结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。
切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。
数学上,切触几何是研究流形上的完全不可积超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶层结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。
切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。