波动方程

波动方程或称波方程是一种重要的偏微分方程,它通常表述所有种类的波,例如声波,光波和水波。它出现在不同领域,例如声学,电磁学,和流体力学。波动方程的变种可以在量子力学和广义相对论中见到。
历史上,象乐器那样的振动弦问题曾被很多科学家研究,包括达朗贝尔,欧拉,丹尼尔·伯努利,和拉格朗日。
对于一个标量quantity u的波动方程的一般形式是:
{ partial^2 u over partial t^2 } = c^2
abla^2u
这里c通常是一个固定常数,也就是波的传播速率(对于空气中的声波大约是330米/秒, 参看音速)。对于弦的振动,这可以有很大的变化范围:在螺旋弹簧上(slinky),它可以慢到1米/秒。但若c作为波长的函数改变,它应该用相速度代替:
v_mathrm = frac{omega}.
注意波可能叠加到另外的运动上(例如声波的传播在气流之类的移动媒介中)。那种情况下,标量u会包含一个马赫因子[1](对于沿着流运动的波为正,对于反射波为负)。
u = u(x,t), 是振幅,在特定位置x和特定时间t的波强度的一个测量。对于空气中的声波就是局部气压,对于振动弦就使从静止位置的位移。
abla^2 是相对于位置变量x的拉普拉斯算子。注意u可能是一个标量或向量。
对于一维标量波动方程的一般解是由达朗贝尔给出的: u(x,t) = F(x-ct) + G(x+ct) 其中F和G为任意函数,分别对应于前进行波,和后退行波。要决定F和G必须考虑两个初始条件:
u(x,0)=f(x)
u_{,t}(x,0)=g(x)
这样达朗贝尔公式变成了:
u(x,t) = frac{f(x-ct) + f(x+ct)} + frac int_^{x+ct} g(s) ds
在经典的意义下,如果f(x) in C^k并且g(x) in C^则u(t,x) in C^k.
一维情况的波动方程可以用如下方法推导:想象一个质量为m的小质点的队列,互相用长度h的弹簧连接。弹簧的硬度为k :
这里u (x)测量位于x的质点偏离平衡位置的距离。对于位于x+h的质点的运动方程是:
m{partial^2u(x+h,t) over partial t^2}= kLINK
其中u(x)的时间依赖性变成显式的了。