复摆

王朝百科·作者佚名  2010-02-15  
宽屏版  字体: |||超大  

复摆

复摆

compound pendulum

在重力作用下,能绕通过自身某固定水平轴摆动的刚体。即复摆是一刚体绕固定的水平轴在重力的作用下作微小摆动的动力运动体系。又称物理摆[1]。复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点。摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用。设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期如图,式中g为重力加速度。它相当于摆长l=I/ms的单摆作微幅振动的周期。在OC的延长线上取O′点使OO′=l(l称等价摆长)则此点称为复摆的摆动中心。支点和摆动中心可互换位置而不改变复摆的周期。知道T和l,就可由周期公式求出重力加速度g。当复摆受到一个冲量作用时,会在支点上引起碰撞反力。若转轴是刚体对支点的惯量主轴,外冲量垂直于支点和质心的连线OC且作用于摆动中心 O′上,则支点上的碰撞反力为零。因此,复摆的摆动中心又称撞击中心。机器中有些必须经受碰撞的转动件,如离合器、冲击摆锤等,为防止巨大瞬时力对轴承的危害,应使碰撞冲击力通过撞击中心。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有