三角形数

三角形数的定义:如果有一些相同的纸片,他们的数目是1,3,6,10,15……,这些数量的,都可以排成三角形,像这样的数称为三角形数. 现在我们用圆点来表示这些罐头盒,排列如下,像上面的l、3、6、10、15这些能够表示成三角形的形状的总数量的数,叫做三角形数。其构成图如下:
o
o o
o o o
o o o o
o o o o o
n=1 n=2 n=3 n=4 n=5 ..............
s=1 s=3 s=6 s=10 s=15 ..............
根据自然数列的求和公式,对于第n项的三角形数,可以得到其计算公式为:s(n)=1+2+3+...+n=n*(n+1)/2.
下面讨论两个问题:
1)前n个三角形数的和:T(n)=s(1)+s(2)+...+s(n)
由s(n)=n*(n+1)/2=(n^2+n)/2
得到:T(n)=(∑n^2+∑n)/2=[n(n+1)(2n+1)/6+n(n+1)/2]/2=n(n+1)(n+2)/6.
2)判断一个数是否为三角形数:对任给一个正整数K,则若为三角形数,有:n*(n+1)/2=K得:n*(n+1)=2K
从而:n<(2K)^(1/2)[即2K开根号]<n+1;这样就得到了一个n,如果这个n满足:n(n+1)/2=K则说明K是三角形数.
具体:你注意到了吗,商店橱窗里的罐头盒一般都是这样排列的。它们按照一定的规律排成了三角形。想一想:能不能把9个圆点按上面的规律排成一个三角形?9是不是三角形数?再想一想:能不能把25个圆点按上面的规律排成一个三角形?25是不是三角形数?为了能方便地看出规律,我们把三角形数改排成图。观察这些三角形数,你发现它们有什么规律吗?原来三角形数是从l开始的连续自然数的和。l是第一个三角形数,3是第二个三角形数,6是第三个三角形数,10是第四个三角形数,15是第五个三角形数……那么,第七个三角形数就是:l+2+3+4+5+6+7=28;第九个三角形数就是:1+2+3+4+5+6+7+8+9=45;第十个三角形数就是:1+2+3+…+10=55;第1OO个三角形数就是:l+2+3+…+100=5050。