时间复杂度

王朝百科·作者佚名  2009-11-11  
宽屏版  字体: |||超大  

1. 算法复杂度分为 时间复杂度和空间复杂度。

作用: 时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。

2. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))

分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

3. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,在找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))

例:算法:

for(i=1;i<=n;++i)

{

for(j=1;j<=n;++j)

{

c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次

for(k=1;k<=n;++k)

c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次

}

}

则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级

则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c

则该算法的 时间复杂度:T(n)=O(n的三次方)

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有