等比数列求和公式
(1)等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1);
推广式:an=am×q^(n-m);
(3) 求和公式:Sn=n*a1 (q=1)
Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)
(q为比值,n为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am*an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".
(6)在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。