络合物效应
英文络合物效应 complex effect
定义反应粒子和溶剂分子形成的络合物对化学反应速率的影响。从结构特点来看,这种络合物可以是电子授受型或氢键型。络合物是由一些带负电的基团或电中性的极性分子,同金属离子或原子形成的配位键化合物。络合物通常指含有络离子的化合物,例如络盐[Ag(NH3)2]Cl、络酸H2[PtCl6]、络碱Cu(NH3)4(OH)2等;也指不带电荷的络合分子,例如Fe(SCN)3、Co(NH3)3Cl3等。配合物又称络合物。
解释电子授受型络合物[1]的形成是由于一个电子或一个电子对从电子给体部分地转移到电子受体。给体分为[kg1][kg1]给体和n给体。给体通过其电子与受体络合,如烷烃、烯烃和芳香烃化合物等。n 给体则是通过孤独电子对离域到受体的原子轨道而络合,如含氧、氮和硫的有机化合物等。电子授受型络合物形成速率远远大于一般的液相反应速率,而且只能用弛豫法或流动法进行测定。如果电子授受型络合物由反应粒子和溶剂分子组成,则它将影响反应粒子的反应活性,即它们的溶剂化将直接影响反应的进程。这与溶剂的性质(如介电常数、偶极矩等)有关。如果由两种反应粒子组成了络合物,而且它就是复杂反应的中间物,则这种络合物可以是弱电子授受型的非键结构,也可以是强电子授受型的电荷转移络合物。确定为后者时,必须知道介质是如何影响络合平衡常数[kg1]的,因为此时反应速率常数=,即它不仅与络合物的分解速率常数有关,而且与[kg2]成正比。显然,随着值的增大,反应速率也增大。
例子氢键型络合物为数众多,只要含氢的分子以共价键方式耦合到分子中一个电负性原子上去,即构成氢键,有分子间氢键和分子内氢键之分。
例如,[kg1]由(n-CH)NBr在不同溶剂体系(二氧杂环己烷-水、乙醇-四氯化碳、甲醇-硝基苯)中的离解常数与介电常数 的关系可以看出,按静电效应考虑,lg对1/作图应为直线,实验结果表明,在二氧杂环己烷-水溶剂中为直线,而其余溶剂体系均无线性关系。由核磁共振谱可知,离子对和硝基苯形成了络合物;在甲醇存在下,甲醇和溴离子形成氢键型络合物,促进了季铵盐的离解。
形成络合物的能力强,有利于离解。目前要找到严格的定量关系还有困难。可用来说明反应物和溶剂分子形成氢键而影响了反应速率的一个很好的例子,是醚对苯酚烷基化反应的阻化作用。例如,在溶液中加入二氧杂环己烷或四氢呋喃,都会降低烷基化反应速率。前者与苯酚形成1∶2氢键型络合物,后者形成1∶1型氢键化合物。