反弹道导弹导弹
用于拦截敌方来袭弹道导弹的导弹。又称反导弹导弹。它与多种地面雷达、数据处理设备和指挥控制通信系统等,组成防御战略弹道导弹的武器系统。简称反导系统。它是国家战略防御系统的重要组成部分。
反弹道导弹导弹按拦截空域,分为高空拦截导弹和低空拦截导弹。前者用于对来袭弹道导弹飞行到大气层外时实施拦截;后者用于对来袭弹道导弹进入目标上空时实施拦截。反弹道导弹导弹主要特点是反应速度快、命中精度高。其中,高空拦截导弹受到普遍重视。实战时,可单独部署使用,也可两者配合部署使用,以提高其拦截概率。反弹道导弹导弹主要由战斗部、推进系统、制导系统、电源系统和弹体等组成。
反弹道导弹导弹是指用于拦截来袭弹道导弹的导弹。它是国家战略防御系统的重要组成部分。
分类通常反弹道导弹导弹分为两类:①高空拦截导弹。又称被动段拦截导弹。一般用于在大气层外拦截来袭弹道导弹。②低空拦截导弹。又称再入段拦截导弹或近程拦截导弹。用于在目标上空拦截来袭弹道导弹。反弹道导弹导弹的主要特点是反应时间短、命中精度高。其中,高空拦截导弹受到普遍重视。实战时,可单独部署使用,也可与低空拦截导弹配合部署使用,以提高其拦截概率。
组成 反弹道导弹导弹主要由战斗部、推进系统、制导系统、电源系统和弹体等组成。①战斗部。是直接毁伤目标的有效载荷。大多采用核爆炸装置,用在大气层外拦截来袭弹道导弹时,主要依靠核爆炸释放的x射线,穿透来袭弹头的烧蚀层,破坏其防热层,进而烧毁其内部的核装药;用在大气层内拦截时,主要依靠核爆炸释放出的中子流、γ射线和强大的冲击波等综合毁伤效应,摧毁来袭弹头。随着反弹道导弹导弹命中精度的提高,有的战斗部已采用常规装药或无装药的高速飞行的精确制导弹头,以近炸或直接碰撞方式毁伤来袭弹头。②推进系统。是使导弹获得一定飞行速度的动力装置。一般采用推力大、启动时间短的固体火箭发动机。为了获得良好的飞行加速性,通常由火箭主发动机和火箭助推器组成推进系统,能产生100g以上的加速度。当拦截来袭机动弹头时,反弹道导弹导弹的末级发动机,一般采用推力和方向均可控制的固体火箭发动机,也可采用能多次启动和调整推力的液体火箭发动机。③制导系统。是导引和控制导弹准确命中目标的装置。通常采用无线电指令制导系统。④电源系统。是保证导弹各系统正常工作的能源装置。⑤弹体。是连接、安装弹上各分系统,承受各种载荷并具有良好的气动外形的结构体。一般由2级或3级弹体组成,还有弹翼和操纵稳定面,以保证导弹稳定飞行和改变飞行方向的需要。通常采用锥柱形或全锥形的结构样式,以轻型耐烧蚀、高强度的金属或非金属材料制成。为了能够对来袭弹道导弹进行全方位拦截,反弹道导弹导弹多采用导弹发射井发射,并配有重新装填、快速发射的装置。为提高其生存能力,也有的采取机动配置方式。
简史随着进攻性弹道导弹的出现和发展,用于拦截它的反弹道导弹导弹相继问世。早在1944年德国使用v-2导弹袭击伦敦时,英国就开始寻求在空中拦截v-2导弹的防御手段,曾提出包括反弹道导弹导弹、预警和跟踪导引雷达所组成的防御方案,为研制反弹道导弹武器系统奠定了基础。美国和前苏联在防空导弹的基础上,于50年代初,从理论上论证了研制反弹道导弹导弹的可行性,并进行了一系列的试验。60年代初,美国研制成"奈基-宙斯"反弹道导弹导弹,最大射程为640千米,因其识别能力差、拦截概率低,未进行部署。同时,前苏联研制成了"橡皮套鞋"反弹道导弹导弹,最大作战半径为640千米,最大拦截高度为320千米,有效杀伤半径为6~8千米,60年代中期在莫斯科周围进行了部署。1975年,美国在大福克斯、怀特曼等反导场地,部署了由低空拦截的"斯普林特"和高空拦截的"斯帕坦"两种反弹道导弹导弹所组成的"卫兵"防御系统,但该系统难以拦截多弹头和带突防装置的弹头,于1976年2月宣布关闭。1980年,前苏联因反导技术有了新的进展,宣布将已部署的64部反弹道导弹导弹发射架拆除一半。其余32部发射架配备的是"橡皮套鞋"改进型sh-04反弹道导弹导弹,它可在飞行中关闭发动机,在滑行中等待地面指令再次启动对目标实施拦截。同时,还装备了sh-08型高速、低空拦截导弹。1983年,美国提出建立多层次反弹道导弹导弹防御系统,着手研制非核拦截导弹、超高速拦截导弹等。1991年,美国陆军eris拦截器试射成功,该拦截器从夸贾林岛靶场发射井发射,在空中摧毁了从7770千米以外的范登堡空军基地发射的导弹模拟核弹头。
展望弹道导弹的突防、隐身和精确制导等技术的不断发展,推动了反弹道导弹导弹的发展。还将继续研制多层拦截导弹,例如研制在卫星上发射的助推段拦截导弹;提高自身的生存能力和实施拦截的成功概率;研究由非核战斗部代替核战斗部的技术,或采用无装药的直接作用于目标的碰撞式战斗部;进一步使反弹道导弹导弹小型化、机动化、自动化,采用多种发射方式。