间断点

王朝百科·作者佚名  2010-04-26  
宽屏版  字体: |||超大  

间断点
震荡间断点

1.定义设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:

(1)在x=x0没有定义;

(2)虽在x=x0有定义,但x→x0 limf(x)不存在;

(3)虽在x=x0有定义,且x→x0 limf(x)存在,但x→x0 limf(x)≠f(x0),

则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。

2.类型几种常见类型。

可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。(图一)

跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。(图二)

无穷间断点:函数在该点无定义,且左极限、右极限至少有一个为∞。如函数y=tanx在点x=π/2处。(图三)

振荡间断点:函数在该点无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。(图四)

可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。

由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。

3.图例

间断点
第一类间断点

间断点
第二类间断点

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有