海盗号探测器
简介1975年8月20日和9月9日,美国发射了两个海盗号探测器,是水手号探测器的改进型。主要任务用于探索火星上有无生物。这两个探测器由轨道飞行器和登陆舱组成,长为5.08米,重3530千克,其中轨道飞行器重2330千克,登陆舱重1200千克,用三脚支撑,装有生物化学实验箱、测量挖掘设备、两台电视摄像机、机械手和电源。
海盗1号和2号分别于7月20日和9月 3日在火星表面软着陆成功,40分钟后就将第一张火星彩照发回地球。它们分别在火星上工作了六年和三年,对火星进行了考察和拍照,共发回五万多幅火星照片,分辨率高达200米。四次探测有无生命存在的实验中,没有发现任何高级生命痕迹,从而排除了有关火星人的推测。
航天器设计轨道器
轨道器的主要功能是运送着陆器到火星,侦测定位以确认着陆地点,为着陆器进行通讯中继,以及进行其自身的
科研项目。轨道器基于较早的水手9 航天器,其横截面为约2.5米的八边形。总重2328千克,其中1445千克为推进剂和姿态控制气体。轨道器总高度3.29米。 四个太阳能电池翼沿轨道器轴对称布置,相对的太阳能电池翼展宽为9.75米。每个翼板上安装两块1.57 ×1.23米面积的太阳能电池板,太阳能板由34,800块太阳能电池构成,在火星可提供620瓦特功率。电能也贮存于两个30安时镍铬电池。 主推进器为使用二元推进剂(甲基肼和四氧化二氮)的液体火箭发动机。发动机推力1323牛顿,换算为Delta-V为1480米/秒。发动机可双轴摆动9度。 姿态控制由12个小压缩氮喷嘴、太阳寻获传感器、巡航太阳传感器、老人星跟踪器和由六个三轴稳定陀螺仪构成的惯性部件和两个加速计。
通讯系统包括一个20瓦特S波段(2.3GHz)发射机、两个20瓦特行波管放大器。为了无线电科学研究和通讯实验设置的X波段(8.4GHz)下行链路。S波段(2.1GHz)上行链路。1.5米双轴稳定抛物面天线、固定低增益天线、两个1280兆位磁带记录器和一个381MHz中继无线电装置。
科学仪器包括成像、大气水蒸气、红外热成像装置安装在具有温度控制的指向性扫描平台中。科学仪器总重72千克。航天器的发射机也进行无线电科学研究。
指令处理经由各自独立的两个同样的数据处理器,各具有容量为4096字的存储器用于存贮上行命令和已获取的数据。
着陆器
着陆器是六面的铝质结构,每面1.09米高,0.56 米长。由三条支撑脚支持。三个支撑脚构成边长2.21米的等边三角形。 着陆器由两个钚-238放射性衰变电池供电。电池安装在着陆器基础结构两侧,由防风板覆盖,高28厘米,直径58厘米。可提供4.4伏特,30瓦特的连续电源。四个8安时28伏特蓄电池提供峰值负荷。 推进由使用单组元联氨推进剂的火箭发动机提供。发动机喷嘴共12个,排列成四组。三组喷嘴可提供32牛顿推力,产生Delta-V180米/秒。这些喷嘴也通过推力控制进行移动和旋转控制。下降与着陆由三个(安装于基座的长边,呈120度分离布置)具有18个喷嘴的单组元联氨推进剂发动机提供动力,推力于276牛顿至2667牛顿间可调。联氨推进剂经过净化,以防污染火星表面。着陆器于发射时携带86千克推进剂,盛装于2个钛质燃料箱中。燃料箱安装于放射性衰变电池风挡的两端。 着陆器控制经由惯性部件、四个陀螺仪、空气减速装置、雷达高度表、下降与着陆雷达和推力控制。 发射后与进入火星大气层前,着陆器被热护盾保护。热护盾用于着陆器进入大气层时进行气动减速,也用于防治地球微生物污染火星表面。出于防范微生物污染考虑,着陆器经过7天华氏250度“烘培”消毒。发射时,一个“微生物防护罩”包裹着热护盾,直到半人马上面级将轨道器/着陆器联合射出地球轨道后抛弃。这个为海盗号计划开发的行星保护方法也用于其他任务。 通讯经由一个20瓦特S波段发射机和两个20瓦特行波管放大器。一个双轴稳定高增益抛物面天线安装在基座一侧的吊竿上。一个全向低增益S波段安装在基座上。二者均可直接与地球通讯。一个UHF波段(381MHz)天线提供由轨道器中继的单工通讯。数据存储于40兆位容量的磁带记录器中。着陆器计算机具有6000字容量的存储器用于指令存贮。 携带的仪器用于着陆器主要科学研究目的:生物研究、化学成分分析(有机与无机)、气象、地震学、地磁学以及地貌、火星表面和大气物理。 仪器包括:两个360度圆柱扫描相机安装在基座长边附近、自中部伸展的带有收集探头的采样臂、温度传感器、磁体、气象探测器。地面温度传感器、风向、风速传感器装置于一条支撑腿上。地震传感器、磁体、相机测试目标、放大镜安装在相机背侧,接近高增益天线。生物学实验设备、气像色谱分光镜和X射线荧光分光镜安装在环境控制隔间中。气压传感器安装在着陆器底部。科学仪器总重91千克。
海盗项目共耗资10亿美元。
任务结束海盗航天器最终逐一失效:
航天器
抵达日期
失效日期
运作时间
失效原因
海盗一号轨道器
1976年6月19日
1980年8月7日
4年1月19天
姿态控制推进剂耗尽后关闭
海盗1号着陆器
1976年7月20日
1982年11月11日
6年3月12天
错误的地面控制信息清除了天线位置数据导致失去联系
海盗2号轨道器
1976年8月7日
1978年7月25日
1年11月18天
推进系统推进剂泄漏后关闭
海盗2号着陆器
1976年9月3日
1980年4月11日
3年7月8天
电池失效后关闭
[title2]
相关小品海盗号探测器误杀火星微生物[/title2]
据美国媒体2007年01月7日报道,有科学家发表论文称,美国宇航局的火星探测器在30年前可能无意中已经发现火星微生物,但是由于没有意识到,在随后的操作中可能误将所发现的微生物杀死。
在近期美国天文学协会的一次会议上,来自华盛顿州大学的地质学教授舒尔策-马库赫在一份论文中指出,1976年至1977年美国宇航局发射的“海盗号”可能无法辨认火星上能已经发现的火星微生物。
报告中指出,由于“海盗号” 在寻找的是类似地球的生命形式。这种生命形式的特点是盐水是活细胞内部液体。由于火星表面又干又冷,它上面生命形式的基本单位可能是由水和过氧化氢的混合物组成,并据此进化。水和过氧化氢混合物能在极短低温的情况下保持液态,因而细胞在冰冻的情况下并不会死亡,甚至可以吸收火星上的稀薄水蒸气。
舒尔策-马库赫在论文中称,由于技术以及认知局限性,“海盗”探测器在上个世纪70年代无法识别以过氧化氢为生命基础的火星微生物,相反可能会在无意的操作中“溺死”或者“热死”这些微生物。
美国宇航局的官员则表示,报告中的这一点,可能有助于将来的火星探测任务,探测器将有望寻找可能存在的不同的生命形态。就在上个月,科学家们兴奋地在新近拍摄传回的火星照片上发现,火星上可能有过液态的水流动。据悉,美国宇航局计划在今年夏天将进行新的火星探测任务。
海盗号探测器存设计缺陷可能错过火星生命
1975年,两个“海盗号”火星探测器在火星着陆。美国航天局先后发射了两个“海盗号”火星探测器来寻找未知的火星生命,但是“海盗号”在火星表面的实验没有任何收获。不过近日,有学者提出当初“海盗号”的设计存在严重问题,由于它的敏感性不足,因此很难辨别出潜在的火星生命体。
当初,“海盗号”探测器的考察暗示了一些带有消化器官的分子组织存在的可能性,但是科学家用“海盗号”的气相色谱分析仪(GCMS)随后进行的土壤加热分析却否决了生命物质的存在。当时科学家的解释是过氧化物的大量存在让火星的土壤变得异常。这次失败的经历让很多科学家一度打消了火星存在生命的念头。
分析仪器设计有误
最近,以墨西哥大学纳瓦罗·冈萨雷斯为首的研究人员对此提出了质疑。他们通过实验发现“海盗号”上的这种气相色谱分析仪(GCMS)存在很大设计问题。他们发现GCMS甚至都不能从与火星类似的地球土壤中探测出生命物质的存在,冈萨雷斯通过其他的方法探测出了智利北部的阿塔卡马沙漠中获取的土壤标本中含有微生物,但是GCMS却没有发现。这些样本还包括来自西班牙西北部的里沃提诺河床上提取的含铁土壤,它的成分与火星表面的土壤非常相似。
吉尔伯托·列文是长期研究“海盗号”的科学家,他一直坚持认为GCMS的检测结果有缺陷。现在他再次站出来支持这项研究:“现在的研究结果充分证明了人类实际上已经找到了火星存在的生命,只不过我们还没有发现具体的证据。”华盛顿州立大学的地球物理学家德克·苏尔兹-马库赫认为,这项研究增加了大量的证据,现在有必要对当初“海盗号”的考察结果进行重新研究。
火星生命仍待探索
现在科学家们需要解释的问题是,为何有大量的有机物从众多的小行星和彗星中不断流入火星,但实际上火星土壤中的有机物含量却非常低。目前的主流观点认为,火星土壤中存在的某种神秘的氧化物与这些有机物发生了化学反应,从而减少了有机物的含量。
纳瓦罗·冈萨雷斯认为,人们应该采取进一步的行动来探索火星生命,毕竟到目前为止,还没有任何实验和研究证明火星生命的存在。目前只能确认的是火星表面确实存在有机化合物。
据悉,2009年,美国航天局将计划建立火星实验室,希望能够在火星上发现微生物的存在。欧洲航天局也计划在2011年或2013年进行一项名为“ExoMars”的火星探测计划。
海盗号火星着陆探测计划1975年,美国航天局实施了“海盗号”火星着陆探测计划,先后发射了两个“海盗号”火星探测器,并于1976年在火星表面软着陆成功。“海盗号”进行了大量拍照和考察,在火星上工作时间达6年之久。这两个探测器为探测火星生命进行了4次重要检查和试验。