列维-奇维塔联络

王朝百科·作者佚名  2009-11-25  
宽屏版  字体: |||超大  

列维-奇维塔联络(Levi-Civita connection),在黎曼几何中, 是切丛上的无扭率联络,它保持黎曼度量(或伪黎曼度量)不变。因Tullio Levi-Civita而得名。

黎曼几何基本定理表明存在唯一连接满足这些属性。

在黎曼流形和伪黎曼流形的理论中,共变导数一词经常用于列维-奇维塔联络。联络的坐标空间的表达式称为克氏符号(Christoffel symbols)。

设(M,g)为一黎曼流形(或伪黎曼流形),则仿射联络 在满足以下条件时是列维-奇维塔联络

保度量,也就是,对任何向量场X, Y, Z我们有, 其中Xg(Y,Z)表示函数g(Y,Z)沿向量场 X的导数。

无扭率, 也就是,对任何向量场X,Y我们有, 其中[X,Y]是向量场 X 和Y的李括号。

沿曲线的导数

列维-奇维塔联络也定义了一个沿曲线的导数,通常用D表示。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有