王朝百科
分享
 
 
 

机器视觉理论、算法与实践

王朝百科·作者佚名  2010-07-10  
宽屏版  字体: |||超大  

版权信息书 名: 机器视觉理论、算法与

机器视觉理论、算法与实践

实践

作者:(英国)E.R.Davies

出版社:人民邮电出版社

出版时间: 2009

ISBN: 9787115195494

开本: 16

定价: 128.00 元

内容简介《机器视觉理论、算法与实践(英文版·第3版)》是机器视觉课程的理想教材,作者清晰、系统地阐述了机器视觉的基本概念,介绍理论的基本元素的同时强调算法和实用设计的约束。书中阐述各个主题时,既阐述了基本算法,又介绍了数学工具。此外,《机器视觉理论、算法与实践(英文版·第3版)》还使用案例演示具体技术的应用,并阐明设计现实机器视觉系统的关键约束。

《机器视觉理论、算法与实践(英文版·第3版)》适合作为高等院校计算机及电子工程相关专业研究生的教材,更是从事机器视觉、计算机视觉和机器人领域研究的人员不可多得的技术参考书。

作者简介E.R.Davies,著名机器视觉专家。英国物理学会会士、IEE会士、英国机器视觉协会的执行委员。毕业于牛津大学,现任伦敦大学皇家霍洛威学院机器视觉教授。在机器视觉、图像分析、自动视觉检测、噪声抑制技术等方面有丰富的教学和科研经验。

编辑推荐40年来,机器视觉在各行各业得到了广泛的应用,包括自动检测、机器人组装、行车导引、流量监控、签名验证、生物测量、遥感图像分析等。但是另一方面,面对大量新的研究成果,要充分理解相关的理论和应用,进行算法和系统的设计,却越来越困难。

《机器视觉理论、算法与实践(英文版·第3版)》能够满足广大读者学习和掌握机器视觉知识的需求。全书图文并茂,清晰、系统地阐述了基本概念,提供了丰富的应用案例和代码,强调了算法和实用设计的各种约束条件。新版做了全面的更新,反映了最新进展,内容更加全面。《机器视觉理论、算法与实践(英文版·第3版)》是机器视觉课程的理想教材,已经成为国内外很多名校的指定教学参考书。同时,《机器视觉理论、算法与实践(英文版·第3版)》也是工程技术人员不可或缺的权威参考书。

目录CHAPTER1Vision,theChallenge

1.1Introduction-TheSenses1

1.2TheNatureofVision2

1.2.1TheProcessofRecognition2

1.2.2TacklingtheRecognitionProblem4

1.2.3ObjectLocation7

1.2.4SceneAnalysis9

1.2.5VisionasInverseGraphics10

1.3FromAutomatedVisualInspectiontoSurveillance11

1.4WhatThisBookIsAbout12

1.5TheFollowingChapters14

1.6BibliographicalNotes15

PART1LOW-LEVELVISION17

CHAPTER2ImagesandImagingOperations

2.1Introduction19

2.1.1Gray-scaleversusColor21*

2.2ImageProcessingOperations24

2.2.1SomeBasicOperationsonGray-scaleImages25

2.2.2BasicOperationsonBinaryImages32

2.2.3NoiseSuppressionbyImageAccumulation37

2.3ConvolutionsandPointSpreadFunctions39

2.4SequentialversusParallelOperations41

2.5ConcludingRemarks43

2.6BibliographicalandHistoricalNotes44

2.7Problems44

CHAPTER3BasicImageFilteringOperations

3.1Introduction47

3.2NoiseSuppressionbyGaussianSmoothing49

3.3MedianFilters51

3.4ModeFilters54

3.5RankOrderFilters61

3.6ReducingComputationalLoad61

3.6.1ABit-basedMethodforFastMedianFiltering64

3.7Sharp-UnsharpMasking65

3.8ShiftsIntroducedbyMedianFilters66

3.8.1ContinuumModelofMedianShifts68

3.8.2GeneralizationtoGray-scaleImages72

3.8.3ShiftsArisingwithHybridMedianFilters75

3.8.4ProblemswithStatistics76

3.9DiscreteModelofMedianShifts78

3.9.1GeneralizationtoGray-scaleImages82

3.10ShiftsIntroducedbyModeFilters84

3.11ShiftsIntroducedbyMeanandGaussianFilters86

3.12ShiftsIntroducedbyRankOrderFilters86

3.12.1ShiftsinRectangularNeighborhoods87

3.12.2CaseofHighCurvature91

3.12.3TestoftheModelinaDiscreteCase91

3.13TheRoleofFiltersinIndustrialApplicationsofVision94

3.14ColorinImageFiltering94

3.15ConcludingRemarks96

3.16BibliographicalandHistoricalNotes96

3.17Problems98

CHAPTER4ThresholdingTechniques

4.1Introduction103

4.2Region-growingMethods104

4.3Thresholding105

4.3.1FindingaSuitableThreshold105

4.3.2TacklingtheProblemofBiasinThresholdSelection107

4.3.3AConvenientMathematicalModel111

4.3.4Summary114

4.4AdaptiveThresholding114

4.4.1TheChowandKanekoApproach118

4.4.2LocalThresholdingMethods119

4.5MoreThoroughgoingApproachestoThresholdSelection122

4.5.1Variance-basedThresholding122

4.5.2Entropy-basedThresholding123

4.5.3MaximumLikelihoodThresholding125

4.6ConcludingRemarks126

4.7BibliographicalandHistoricalNotes127

4.8Problems129

CHAPTER5EdgeDetection

5.1Introduction131

5.2BasicTheoryofEdgeDetection132

5.3TheTemplateMatchingApproach133

5.4Theoryof3×3TemplateOperators135

5.5Summary-DesignConstraintsandConclusions140

5.6TheDesignofDifferentialGradientOperators141

5.7TheConceptofaCircularOperator143

5.8DetailedImplementationofCircularOperators144

5.9StructuredBandsofPixelsinNeighborhoodsofVariousSizes146

5.10TheSystematicDesignofDifferentialEdgeOperators150

5.11ProblemswiththeaboveApproach-SomeAlternativeSchemes151

5.12ConcludingRemarks155

5.13BibliographicalandHistoricalNotes156

5.14Problems157

CHAPTER6BinaryShapeAnalysis

6.1Introduction159

6.2ConnectednessinBinaryImages160

6.3ObjectLabelingandCounting161

6.3.1SolvingtheLabelingProbleminaMoreComplexCase164

6.4MetricPropertiesinDigitalImages168

6.5SizeFiltering169

6.6TheConvexHullandItsComputation171

6.7DistanceFunctionsandTheirUses177

6.8SkeletonsandThinning181

6.8.1CrossingNumber183

6.8.2ParallelandSequentialImplementationsofThinning186

6.8.3GuidedThinning189

6.8.4ACommentontheNatureoftheSkeleton189

6.8.5SkeletonNodeAnalysis191

6.8.6ApplicationofSkeletonsforShapeRecognition192

6.9SomeSimpleMeasuresforShapeRecognition193

6.10ShapeDescriptionbyMoments194

6.11BoundaryTrackingProcedures195

6.12MoreDetailontheSigmaandChiFunctions196

6.13ConcludingRemarks197

6.14BibliographicalandHistoricalNotes199

6.15Problems200

CHAPTER7BoundaryPatternAnalysis

7.1Introduction207

7.1.1HysteresisThresholding209

7.2BoundaryTrackingProcedures212

7.3TemplateMatching-AReminder212

7.4CentroidalProfiles213

7.5ProblemswiththeCentroidalProfileApproach214

7.5.1SomeSolutions216

7.6The(s,ψ)Plot218

7.7TacklingtheProblemsofOcclusion220

7.8ChainCode223

7.9The(r,s)Plot224

7.10AccuracyofBoundaryLengthMeasures225

7.11ConcludingRemarks227

7.12BibliographicalandHistoricalNotes228

7.13Problems229

CHAPTER8MathematicalMorphology

8.1Introduction233

8.2DilationandErosioninBinaryImages234

8.2.1DilationandErosion234

8.2.2CancellationEffects234

8.2.3ModifiedDilationandErosionOperators235

8.3MathematicalMorphology235

8.3.1GeneralizedMorphologicalDilation235

8.3.2GeneralizedMorphologicalErosion237

8.3.3DualitybetweenDilationandErosion238

8.3.4PropertiesofDilationandErosionOperators239

8.3.5ClosingandOpening242

8.3.6SummaryofBasicMorphologicalOperations245

8.3.7Hit-and-MissTransform248

8.3.8TemplateMatching249

8.4Connectivity-basedAnalysisofImages249

8.4.1SkeletonsandThinning250

8.5Gray-scaleProcessing251

8.5.1MorphologicalEdgeEnhancement252

8.5.2FurtherRemarksontheGeneralizationtoGray-scaleProcessing252

8.6EffectofNoiseonMorphologicalGroupingOperations255

8.6.1DetailedAnalysis257

8.6.2Discussion259

8.7ConcludingRemarks259

8.8BibliographicalandHistoricalNotes260

8.9Problem261

PART2INTERMEDIATE-LEVELVISION263

CHAPTER9LineDetection

9.1Introduction265

9.2ApplicationoftheHoughTransformtoLineDetection265

9.3TheFoot-of-NormalMethod269

9.3.1ErrorAnalysis272

9.3.2QualityoftheResultingData274

9.3.3ApplicationoftheFoot-of-NormalMethod276

9.4LongitudinalLineLocalization276

9.5FinalLineFitting277

9.6ConcludingRemarks277

9.7BibliographicalandHistoricalNotes278

9.8Problems280

CHAPTER10CircleDetection

10.1Introduction283

10.2Hough-basedSchemesforCircularObjectDetection284

10.3TheProblemofUnknownCircleRadius288

10.3.1ExperimentalResults290

10.4TheProblemofAccurateCenterLocation295

10.4.1ObtainingaMethodforReducingComputationalLoad296

10.4.2ImprovementsontheBasicScheme299

10.4.3Discussion300

10.4.4PracticalDetails300

10.5OvercomingtheSpeedProblem302

10.5.1MoreDetailedEstimatesofSpeed303

10.5.2Robustness305

10.5.3ExperimentalResults306

10.5.4Summary307

10.6ConcludingRemarks310

10.7BibliographicalandHistoricalNotes311

10.8Problems312

CHAPTER11TheHoughTransformandItsNature

11.1Introduction315

11.2TheGeneralizedHoughTransform315

11.3SettingUptheGeneralizedHoughTransform-SomeRelevantQuestions317

11.4SpatialMatchedFilteringinImages318

11.5FromSpatialMatchedFilterstoGeneralizedHoughTransforms319

11.6GradientWeightingversusUniformWeighting320

11.6.1CalculationofSensitivityandComputationalLoad323

11.7Summary324

11.8ApplyingtheGeneralizedHoughTransformtoLineDetection325

11.9TheEffectsofOcclusionsforObjectswithStraightEdges327

11.10FastImplementationsoftheHoughTransform329

11.11TheApproachofGerigandKlein332

11.12ConcludingRemarks333

11.13BibliographicalandHistoricalNotes334

11.14Problem337

CHAPTER12EllipseDetection

12.1Introduction339

12.2TheDiameterBisectionMethod339

12.3TheChord-TangentMethod341

12.4FindingtheRemainingEllipseParameters343

12.5ReducingComputationalLoadfortheGeneralizedHoughTransformMethod345

12.5.1PracticalDetails349

12.6ComparingtheVariousMethods353

12.7ConcludingRemarks355

12.8BibliographicalandHistoricalNotes357

12.9Problems358

CHAPTER13HoleDetection

13.1Introduction361

13.2TheTemplateMatchingApproach361

13.3TheLateralHistogramTechnique363

13.4TheRemovalofAmbiguitiesintheLateralHistogramTechnique363

13.4.1ComputationalImplicationsoftheNeedtoCheckforAmbiguities364

13.4.2FurtherDetailoftheSubimageMethod366

13.5ApplicationoftheLateralHistogramTechniqueforObjectLocation368

13.5.1LimitationsoftheApproach370

13.6AppraisaloftheHoleDetectionProblem372

13.7ConcludingRemarks374

13.8BibliographicalandHistoricalNotes375

13.9Problems376

CHAPTER14PolygonandCornerDetection

14.1Introduction379

14.2TheGeneralizedHoughTransform380

14.2.1StraightEdgeDetection380

14.3ApplicationtoPolygonDetection381

14.3.1TheCaseofanArbitraryTriangle382

14.3.2TheCaseofanArbitraryRectangle383

14.3.3LowerBoundsontheNumbersofParameterPlanes385

14.4DeterminingPolygonOrientation387

14.5WhyCornerDetection?389

14.6TemplateMatching390

14.7Second-orderDerivativeSchemes391

14.8AMedian-Filter-BasedCornerDetector393

14.8.1AnalyzingtheOperationoftheMedianDetector394

14.8.2PracticalResults396

14.9TheHoughTransformApproachtoCornerDetection399

14.10ThePlesseyCornerDetector402

14.11CornerOrientation404

14.12ConcludingRemarks406

14.13BibliographicalandHistoricalNotes407

14.14Problems410

CHAPTER15AbstractPatternMatchingTechniques

15.1Introduction413

15.2AGraph-theoreticApproachtoObjectLocation414

15.2.1APracticalExample-LocatingCreamBiscuits419

15.3PossibilitiesforSavingComputation422

15.4UsingtheGeneralizedHoughTransformforFeatureCollation424

15.4.1ComputationalLoad426

15.5GeneralizingtheMaximalCliqueandOtherApproaches427

15.6RelationalDescriptors428

15.7Search432

15.8ConcludingRemarks433

15.9BibliographicalandHistoricalNotes434

15.10Problems437

PART33-DVISIONANDMOTION443

CHAPTER16TheThree-dimensionalWorld

16.1Introduction445

16.2Three-DimensionalVision-TheVarietyofMethods446

16.3ProjectionSchemesforThree-dimensionalVision448

16.3.1BinocularImages450

16.3.2TheCorrespondenceProblem452

16.4ShapefromShading454

16.5PhotometricStereo459

16.6TheAssumptionofSurfaceSmoothness462

16.7ShapefromTexture464

16.8UseofStructuredLighting464

16.9Three-DimensionalObjectRecognitionSchemes466

16.10TheMethodofBallardandSabbah468

16.11TheMethodofSilberbergetal.470

16.12Horaud’sJunctionOrientationTechnique472

16.13AnImportantParadigm-LocationofIndustrialParts476

16.14ConcludingRemarks478

16.15BibliographicalandHistoricalNotes480

16.16Problems482

CHAPTER17TacklingthePerspectiven-PointProblem

17.1Introduction487

17.2ThePhenomenonofPerspectiveInversion487

17.3AmbiguityofPoseunderWeakPerspectiveProjection489

17.4ObtainingUniqueSolutionstothePoseProblem493

17.4.1Solutionofthe3-PointProblem497

17.4.2UsingSymmetricalTrapeziaforEstimatingPose498

17.5ConcludingRemarks498

17.6BibliographicalandHistoricalNotes501

17.7Problems502

CHAPTER18Motion

18.1Introduction505

18.2OpticalFlow505

18.3InterpretationofOpticalFlowFields509

18.4UsingFocusofExpansiontoAvoidCollision511

18.5Time-to-AdjacencyAnalysis513

18.6BasicDifficultieswiththeOpticalFlowModel515

18.7StereofromMotion516

18.8ApplicationstotheMonitoringofTrafficFlow518

18.8.1TheSystemofBascleetal.518

18.8.2TheSystemofKolleretal.520

18.9PeopleTracking524

18.9.1SomeBasicTechniques526

18.9.2Within-vehiclePedestrianTracking528

18.10HumanGaitAnalysis530

18.11Model-basedTrackingofAnimals-ACaseStudy533

18.12Snakes536

18.13TheKalmanFilter538

18.14ConcludingRemarks540

18.15BibliographicalandHistoricalNotes542

18.16Problem543

CHAPTER19InvariantsandTheirApplications

19.1Introduction545

19.2CrossRatios:The“RatioofRatios”Concept547

19.3InvariantsforNoncollinearPoints552

19.3.1FurtherRemarksaboutthe5-PointConfiguration554

19.4InvariantsforPointsonConics556

19.5DifferentialandSemidifferentialInvariants560

19.6SymmetricalCrossRatioFunctions562

19.7ConcludingRemarks564

19.8BibliographicalandHistoricalNotes566

19.9Problems567

CHAPTER20EgomotionandRelatedTasks

20.1Introduction571

20.2AutonomousMobileRobots572

20.3ActiveVision573

20.4VanishingPointDetection574

20.5NavigationforAutonomousMobileRobots576

20.6ConstructingthePlanViewofGroundPlane579

20.7FurtherFactorsInvolvedinMobileRobotNavigation581

20.8MoreonVanishingPoints583

20.9CentersofCirclesandEllipses585

20.10VehicleGuidanceinAgriculture-ACaseStudy588

20.10.13-DAspectsoftheTask590

20.10.2Real-timeImplementation591

20.11ConcludingRemarks592

20.12BibliographicalandHistoricalNotes592

20.13Problems593

CHAPTER21ImageTransformationsandCameraCalibration

21.1Introduction595

21.2ImageTransformations596

21.3CameraCalibration601

21.4IntrinsicandExtrinsicParameters604

21.5CorrectingforRadialDistortions607

21.6Multiple-viewVision609

21.7GeneralizedEpipolarGeometry610

21.8TheEssentialMatrix611

21.9TheFundamentalMatrix613

21.10PropertiesoftheEssentialandFundamentalMatrices614

21.11EstimatingtheFundamentalMatrix615

21.12ImageRectification616

21.133-DReconstruction617

21.14AnUpdateonthe8-PointAlgorithm619

21.15ConcludingRemarks621

21.16BibliographicalandHistoricalNotes622

21.17Problems623

PART4TOWARDREAL-TIMEPATTERNRECOGNITIONSYSTEMS625

CHAPTER22AutomatedVisualInspection

22.1Introduction627

22.2TheProcessofInspection628

22.3ReviewoftheTypesofObjectstoBeInspected629

22.3.1FoodProducts629

22.3.2PrecisionComponents630

22.3.3DifferingRequirementsforSizeMeasurement630

22.3.4Three-dimensionalObjects631

22.3.5OtherProductsandMaterialsforInspection632

22.4Summary-TheMainCategoriesofInspection632

22.5ShapeDeviationsRelativetoaStandardTemplate634

22.6InspectionofCircularProducts635

22.6.1ComputationoftheRadialHistogram:StatisticalProblems636

22.6.2ApplicationofRadialHistograms641

22.7InspectionofPrintedCircuits642

22.8SteelStripandWoodInspection643

22.9InspectionofProductswithHighLevelsofVariability644

22.10X-rayInspection648

22.11TheImportanceofColorinInspection651

22.12BringingInspectiontotheFactory653

22.13ConcludingRemarks654

22.14BibliographicalandHistoricalNotes656

CHAPTER23InspectionofCerealGrains

23.1Introduction659

23.2CaseStudy1:LocationofDarkContaminantsinCereals660

23.2.1ApplicationofMorphologicalandNonlinearFilterstoLocateRodentDroppings663

23.2.2AppraisaloftheVariousSchemas664

23.2.3ProblemswithClosing665

23.3CaseStudy2:LocationofInsects665

23.3.1TheVectorialStrategyforLinearFeatureDetection666

23.3.2DesigningLinearFeatureDetectionMasksforLargerWindows669

23.3.3ApplicationtoCerealInspection670

23.3.4ExperimentalResults671

23.4CaseStudy3:High-speedGrainLocation673

23.4.1ExtendinganEarlierSamplingApproach673

23.4.2ApplicationtoGrainInspection675

23.4.3Summary679

23.5OptimizingtheOutputforSetsofDirectionalTemplateMasks680

23.5.1ApplicationoftheFormulas682

23.5.2Discussion683

23.6ConcludingRemarks683

23.7BibliographicalandHistoricalNotes684

CHAPTER24StatisticalPatternRecognition

24.1Introduction687

24.2TheNearestNeighborAlgorithm688

24.3Bayes’DecisionTheory691

24.4RelationoftheNearestNeighborandBayes’Approaches693

24.4.1MathematicalStatementoftheProblem693

24.4.2TheImportanceoftheNearestNeighborClassifier696

24.5TheOptimumNumberofFeatures696

24.6CostFunctionsandError-RejectTradeoff697

24.7TheReceiver-OperatorCharacteristic699

24.8MultipleClassifiers702

24.9ClusterAnalysis705

24.9.1SupervisedandUnsupervisedLearning705

24.9.2ClusteringProcedures706

24.10PrincipalComponentsAnalysis710

24.11TheRelevanceofProbabilityinImageAnalysis713

24.12TheRoutetoFaceRecognition715

24.12.1TheFaceasPartofa3-DObject716

24.13AnotherLookatStatisticalPatternRecognition:TheSupportVectorMachine719

24.14ConcludingRemarks720

24.15BibliographicalandHistoricalNotes722

24.16Problems723

CHAPTER25BiologicallyInspiredRecognitionSchemes

25.1Introduction725

25.2ArtificialNeuralNetworks726

25.3TheBackpropagationAlgorithm731

25.4MLPArchitectures735

25.5OverfittingtotheTrainingData736

25.6OptimizingtheNetworkArchitecture739

25.7HebbianLearning740

25.8CaseStudy:NoiseSuppressionUsingANNs745

25.9GeneticAlgorithms750

25.10ConcludingRemarks752

25.11BibliographicalandHistoricalNotes753

CHAPTER26Texture

26.1Introduction757

26.2SomeBasicApproachestoTextureAnalysis763

26.3Gray-levelCo-occurrenceMatrices764

26.4Laws’TextureEnergyApproach768

26.5Ade’sEigenfilterApproach771

26.6AppraisaloftheLawsandAdeApproaches772

26.7Fractal-basedMeasuresofTexture774

26.8ShapefromTexture775

26.9MarkovRandomFieldModelsofTexture776

26.10StructuralApproachestoTextureAnalysis777

26.11ConcludingRemarks777

26.12BibliographicalandHistoricalNotes778

CHAPTER27ImageAcquisition

27.1Introduction781

27.2IlluminationSchemes782

27.2.1EliminatingShadows784

27.2.2PrinciplesforProducingRegionsofUniformIllumination787

27.2.3CaseofTwoInfiniteParallelStripLights790

27.2.4OverviewoftheUniformIlluminationScenario793

27.2.5UseofLine-scanCameras794

27.3CamerasandDigitization796

27.3.1Digitization798

27.4TheSamplingTheorem798

27.5ConcludingRemarks802

27.6BibliographicalandHistoricalNotes803

CHAPTER28Real-timeHardwareandSystemsDesignConsiderations

28.1Introduction805

28.2ParallelProcessing806

28.3SIMDSystems807

28.4TheGaininSpeedAttainablewithNProcessors809

28.5Flynn’sClassification810

28.6OptimalImplementationofanImageAnalysisAlgorithm813

28.6.1HardwareSpecificationandDesign813

28.6.2BasicIdeasonOptimalHardwareImplementation814

28.7SomeUsefulReal-timeHardwareOptions816

28.8SystemsDesignConsiderations818

28.9DesignofInspectionSystems-TheStatusQuo818

28.10SystemOptimization822

28.11TheValueofCaseStudies824

28.12ConcludingRemarks825

28.13BibliographicalandHistoricalNotes827

28.13.1GeneralBackground827

28.13.2RecentHighlyRelevantWork829

PART5PERSPECTIVESONVISION831

CHAPTER29MachineVision:ArtorScience?

29.1Introduction833

29.2ParametersofImportanceinMachineVision834

29.3Tradeoffs836

29.3.1SomeImportantTradeoffs837

29.3.2TradeoffsforTwo-stageTemplateMatching838

29.4FutureDirections839

29.5Hardware,Algorithms,andProcesses840

29.6ARetrospectiveView841

29.7JustaGlimpseofVision?842

29.8BibliographicalandHistoricalNotes843

APPENDIXRobustStatistics

A.1Introduction845

A.2PreliminaryDefinitionsandAnalysis848

A.3TheM-estimator(InfluenceFunction)Approach850

A.4TheLeastMedianofSquaresApproachtoRegression856

A.5OverviewoftheRobustnessProblem860

A.6TheRANSACApproach861

A.7ConcludingRemarks863

A.8BibliographicalandHistoricalNotes864

A.9Problem865

ListofAcronymsandAbbreviations867

References869

AuthorIndex917

SubjectIndex925

……

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
中国古代四大美女:背后隐藏惊人秘密
 女性   2025-06-20
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有