无限循环小数化为分数
简介
将无限小数化为分数,有一套简单的公式。使其轻松表示出来。
循环节
例如:0.121212……
循环节为12。
公式
第一种:
这个公式必须将循环节的开头放在十分位。若不是可将原数乘10^x(x为正整数)
就为:12.121212……-0.121212……=12
100倍 - 1倍 =99 (99和12之间一条分数线)
此公式需用两位数字,其中两位数差出一个循环节。
再举一个例子:0.00121212……
公式就变为:1212.121212……-12.121212……=1200
100000 倍 - 1000倍 =99000 (1200与99000之间一条分数线)
第一行为原数的的倍数10^x(x为正整数),第二行为与原数的乘数,10^x(x为正整数)。
第二种:
如,将3.305030503050.................(3050为循环节)化为分数。
解:
设:这个数的小数部分为a,这个小数表示成3+a
10000a-a=3053
9999a=3053
a=3053/9999
算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是
(3×9999+3053)/9999
=33050/9999
还有混循环小数转分数
如0.1555.....
循环节有一位,分母写个9,非循环节有一位,在9后添个0
分子为非循环节+循环节(连接)-非循环节+15-1=14
14/90
约分后为7/45