王朝百科
分享
 
 
 

ZF公理系统

王朝百科·作者佚名  2010-09-18  
宽屏版  字体: |||超大  

ZF公理系统是策梅洛(Zermelo)和弗伦克尔(Fraenkel)等提出的ZF系统,主要内容如下:

(ZF1)外延公理:一个集合完全由它的元素所决定。如果两个集合含有同样的元素,则它们是相等的。

(ZF2)空集合存在公理:即存在一集合s,它没有元素。

(ZF3)无序对公理:也就是说,任给两个集合x、y,存在第三个集合z,而w∈z当且仅当w=x或者w=y。

(ZF4)并集公理:也就是说,任给一集合x,我们可以把x的元素的元素汇集到一起,组成一个新集合。

准确的定义:“对任意集合x,存在集合y,使w∈y当且仅当存在z使z∈x且w∈z”。

(ZF5)幂集公理:也就是说,任意的集合x,P(x)也是一集合。

准确的定义:“对任意集合x,存在集合y,使z∈y当且仅当对z的所有元素w,w∈x”。

(ZF6)无穷公理:也就是说,存在一集合x,它有无穷多元素。

准确的定义:“存在一个集合,使得空集是其元素,且对其任意元素x,x∪{x}也是其元素。”

根据皮亚诺公理系统对自然数的描述,此即:存在一个包含所有自然数的集合。

(ZF7)分离公理模式:“对任意集合x和任意对x的元素有定义的逻辑谓词P(z),存在集合y,使z∈y当且仅当z∈x而且P(z)为真”。

(ZF8)替换公理模式:也就是说,对于任意的函数F(x),对于任意的集合t,当x属于t时,F(x)都有定义(ZF中唯一的对象是集合,所以F(x)必然是集合)成立的前提下,就一定存在一集合s,使得对于所有的x属于t,在集合s中都有一元素y,使y=F(x)。也就是说,由F(x)所定义的函数的定义域在t中的时候,那么它的值域可限定在s中。

(ZF9)正则公理:也叫基础公理。所有集都是良基集。说明一个集合的元素都具有最小性质,例如,不允许出现x属于x的情况。

准确的定义:“对任意非空集合x,x至少有一元素y使x∩y为空集。”

注:以上全部即是ZF公理系统的内容

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有