费马多边形数定理
费马多边形数定理说明,每一个正整数最多可以表示为n个n-边形数的和。也就是说,每一个数最多可以表示为三个三角形数之和、四个平方数之和、五个五边形数之和,依此类推。
一个三角形数的例子,是17 = 10 + 6 + 1。
一个众所周知的特例,是四平方和定理,它说明每一个正整数都可以表示为四个平方数之和,例如7 = 4 + 1 + 1 + 1。
拉格朗日在1770年证明了平方数的情况,高斯在1796年证明了三角形数的情况,但直到1813年,柯西才证明了一般的情况。
费马多边形数定理说明,每一个正整数最多可以表示为n个n-边形数的和。也就是说,每一个数最多可以表示为三个三角形数之和、四个平方数之和、五个五边形数之和,依此类推。
一个三角形数的例子,是17 = 10 + 6 + 1。
一个众所周知的特例,是四平方和定理,它说明每一个正整数都可以表示为四个平方数之和,例如7 = 4 + 1 + 1 + 1。
拉格朗日在1770年证明了平方数的情况,高斯在1796年证明了三角形数的情况,但直到1813年,柯西才证明了一般的情况。