王朝百科
分享
 
 
 

分式

王朝百科·作者佚名  2009-12-11  
宽屏版  字体: |||超大  

分式

第一节 分式的基本概念形如A/B,A、B是整式,B中含有未知数且B不等于0的等式叫做分式。其中A叫做分式的分子,B叫做分式的分母。

掌握分式的概念应注意:

(1)分式的分母中必须含有未知数。

(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的法则1.约分:

把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

2.分式的乘法法则:

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

3. 分式的加减法法则:

同分母的分式相加减,分母不变,把分子相加减。

4.通分:

异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6和4/6!即:3/2*3,2/3*2!

5.异分母分式的加减法法则:

异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。

(1).定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 A/B 叫做分式(fraction)。

注:A/B=A×1/B

(2).组成:在分式 中A称为分式的分子,B称为分式的分母。

(3).意义:对于任意一个分式,分母都不能为0,否则分式无意义。

(4).分式值为0的条件:在分母不等于0的前提下,分子等于0,则分式值为0。

注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

第二节 分式的基本性质和变形应用V.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.

VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.

注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.

VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.

X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.

注:(1)约分和通分的依据都是分式的基本性质2.(2)分式的约分和通分都是互逆运算过程.

第三节 分式的四则运算XI.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.

XII.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.

XIII.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.

XIV.分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

第四节 分式方程XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程.

XVII.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)....................................................

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有