对数

数学术语
对数的概念英语名词:logarithms
如果a^n=b,那么log(a)(b)=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。
log(a)(b)函数叫做对数函数。对数函数中b的定义域是b>0,零和负数没有对数;a的定义域是a>0且a≠1。
对数的历史
约翰·纳皮尔/约翰·奈皮尔/约翰·内皮尔(John Napier,1550~1617),苏格兰数学家、神学家,对数的发明者。
Napier出身贵族,于1550年在苏格兰爱丁堡附近的小镇梅奇斯顿(Merchiston Castle,Edinburgh,Scotland)出生,是Merchiston城堡的第八代地主,未曾有过正式的职业。
年轻时正值欧洲掀起宗教革命,他行旅其间,颇有感触。苏格兰转向新教,他也成了写文章攻击旧教(天主教)的急先锋(主要文章于1593年写成)。其时传出天主教的西班牙要派无敌舰队来攻打,Napier就研究兵器(包括拏炮、装甲马车、潜水艇等)准备与其拚命。虽然Napier的兵器还没制成,英国已把无敌舰队击垮,他还是成了英雄人物。
他一生研究数学,以发明对数运算而著称。那时候天文学家Tycho Brahe(第谷,1546~1601)等人做了很多的观察,需要很多的计算,而且要算几个数的连乘,因此苦不堪言。1594年,他为了寻求一种球面三角计算的简便方法,运用了独特的方法构造出对数方法。这让他在数学史上被重重地记上一笔,然而完成此对数却整整花了他20年的工夫。1614年6月在爱丁堡出版的第一本对数专著《奇妙的对数表的描述》("Mirifici logarithmorum canonis descriptio")中阐明了对数原理,后人称为纳皮尔对数:Nap logX。1616年Briggs(亨利·布里格斯,1561 - 1630)去拜访纳皮尔,建议将对数改良一下以十为基底的对数表最为方便,这也就是后来常用的对数了。可惜纳皮尔隔年于1617年春天去世,后来就由Briggs以毕生精力继承纳皮尔的未竟事业,以10为底列出一个很详细的对数表。并且于1619年发表了《奇妙对数规则的结构》,于书中详细阐述了对数计算和造对表的方法。
纳皮尔对数字计算特别有研究,他的兴趣在于球面三角学的运算,而球面三角学乃因应天文学的活动而兴起的。他重新建立了用于解球面直角三角形的10个公式的巧妙记法——圆的部分法则("纳皮尔圆部法则")和解球面非直角三角形的两个公式——"纳皮尔比拟式",以及做乘除法用的"纳皮尔算筹"。此外,他还发明了纳皮尔尺,这种尺子可以机械地进行数的乘除运算和求数的平方根。
对数的性质及推导定义:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
3、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
两种方法只是性质不同,采用方法依实际情况而定
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
4、与(3)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
5、与(3)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)
函数图象1.对数函数的图象都过(1,0)点.
2.对于y=log(a)(n)函数,
①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=-1.
②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.
3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.
其他性质性质一:换底公式
log(a)(N)=log(b)(N)÷log(b)(a)
推导如下:
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
公式二:log(a)(b)=1/log(b)(a)
证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数
log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1
在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。
100以内的对数表
log
0
1
2
3
4
5
6
7
8
9
10
0000
0043
0086
0128
0170
0212
0253
0294
0334
0374
11
0414
0453
0492
0531
0569
0607
0645
0682
0719
0755
12
0792
0828
0864
0899
0934
0969
1004
1038
1072
1106
13
1139
1173
1206
1239
1271
1303
1335
1367
1399
1430
14
1461
1492
1523
1553
1584
1614
1644
1673
1703
1732
15
1761
1790
1818
1847
1875
1903
1931
1959
1987
2014
16
2041
2068
2095
2122
2148
2175
2201
2227
2253
2279
17
2304
2330
2355
2380
2405
2430
2455
2480
2504
2529
18
2553
2577
2601
2625
2648
2672
2695
2718
2742
2765
19
2788
2810
2833
2856
2878
2900
2923
2945
2967
2989
20
3010
3032
3054
3075
3096
3118
3139
3160
3181
3201
21
3222
3243
3263
3284
3304
3324
3345
3365
3385
3404
22
3424
3444
3464
3483
3502
3522
3541
3560
3579
3598
23
3617
3636
3655
3674
3692
3711
3729
3747
3766
3784
24
3802
3820
3838
3856
3874
3892
3909
3927
3945
3962
25
3979
3997
4014
4031
4048
4065
4082
4099
4116
4133
26
4150
4166
4183
4200
4216
4232
4249
4265
4281
4298
27
4314
4330
4346
4362
4378
4393
4409
4425
4440
4456
28
4472
4487
4502
4518
4533
4548
4564
4579
4594
4609
29
4624
4639
4654
4669
4683
4698
4713
4728
4742
4757
30
4771
4786
4800
4814
4829
4843
4857
4871
4886
4900
31
4914
4928
4942
4955
4969
4983
4997
5011
5024
5038
32
5051
5065
5079
5092
5105
5119
5132
5145
5159
5172
33
5185
5198
5211
5224
5237
5250
5263
5276
5289
5302
34
5315
5328
5340
5353
5366
5378
5391
5403
5416
5428
35
5441
5453
5465
5478
5490
5502
5514
5527
5539
5551
36
5563
5575
5587
5599
5611
5623
5635
5647
5658
5670
37
5682
5694
5705
5717
5729
5740
5752
5763
5775
5786
38
5798
5809
5821
5832
5843
5855
5866
5877
5888
5899
39
5911
5922
5933
5944
5955
5966
5977
5988
5999
6010
40
6021
6031
6042
6053
6064
6075
6085
6096
6107
6117
41
6128
6138
6149
6160
6170
6180
6191
6201
6212
6222
42
6232
6243
6253
6263
6274
6284
6294
6304
6314
6325
43
6335
6345
6355
6365
6375
6385
6395
6405
6415
6425
44
6435
6444
6454
6464
6474
6484
6493
6503
6513
6522
45
6532
6542
6551
6561
6571
6580
6590
6599
6609
6618
46
6628
6637
6646
6656
6665
6675
6684
6693
6702
6712
47
6721
6730
6739
6749
6758
6767
6776
6785
6794
6803
48
6812
6821
6830
6839
6848
6857
6866
6875
6884
6893
49
6902
6911
6920
6928
6937
6946
6955
6964
6972
6981
50
6990
6998
7007
7016
7024
7033
7042
7050
7059
7067
51
7076
7084
7093
7101
7110
7118
7126
7135
7143
7152
52
7160
7168
7177
7185
7193
7202
7210
7218
7226
7235
53
7243
7251
7259
7267
7275
7284
7292
7300
7308
7316
54
7324
7332
7340
7348
7356
7364
7372
7380
7388
7396
55
7404
7412
7419
7427
7435
7443
7451
7459
7466
7474
56
7482
7490
7497
7505
7513
7520
7528
7536
7543
7551
57
7559
7566
7574
7582
7589
7597
7604
7612
7619
7627
58
7634
7642
7649
7657
7664
7672
7679
7686
7694
7701
59
7709
7716
7723
7731
7738
7745
7752
7760
7767
7774
60
7782
7789
7796
7803
7810
7818
7825
7832
7839
7846
61
7853
7860
7868
7875
7882
7889
7896
7903
7910
7917
62
7924
7931
7938
7945
7952
7959
7966
7973
7980
7987
63
7993
8000
8007
8014
8021
8028
8035
8041
8048
8055
64
8062
8069
8075
8082
8089
8096
8102
8109
8116
8122
65
8129
8136
8142
8149
8156
8162
8169
8176
8182
8189
66
8195
8202
8209
8215
8222
8228
8235
8241
8248
8254
67
8261
8267
8274
8280
8287
8293
8299
8306
8312
8319
68
8325
8331
8338
8344
8351
8357
8363
8370
8376
8382
69
8388
8395
8401
8407
8414
8420
8426
8432
8439
8445
70
8451
8457
8463
8470
8476
8482
8488
8494
8500
8506
71
8513
8519
8525
8531
8537
8543
8549
8555
8561
8567
72
8573
8579
8585
8591
8597
8603
8609
8615
8621
8627
73
8633
8639
8645
8651
8657
8663
8669
8675
8681
8686
74
8692
8698
8704
8710
8716
8722
8727
8733
8739
8745
75
8751
8756
8762
8768
8774
8779
8785
8791
8797
8802
76
8808
8814
8820
8825
8831
8837
8842
8848
8854
8859
77
8865
8871
8876
8882
8887
8893
8899
8904
8910
8915
78
8921
8927
8932
8938
8943
8949
8954
8960
8965
8971
79
8976
8982
8987
8993
8998
9004
9009
9015
9020
9025
80
9031
9036
9042
9047
9053
9058
9063
9069
9074
9079
81
9085
9090
9096
9101
9106
9112
9117
9122
9128
9133
82
9138
9143
9149
9154
9159
9165
9170
9175
9180
9186
83
9191
9196
9201
9206
9212
9217
9222
9227
9232
9238
84
9243
9248
9253
9258
9263
9269
9274
9279
9284
9289
85
9294
9299
9304
9309
9315
9320
9325
9330
9335
9340
86
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
87
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
88
9445
9450
9455
9460
9465
9469
9474
9479
9484
9489
89
9494
9499
9504
9509
9513
9518
9523
9528
9533
9538
90
9542
9547
9552
9557
9562
9566
9571
9576
9581
9586
91
9590
9595
9600
9605
9609
9614
9619
9624
9628
9633
92
9638
9643
9647
9652
9657
9661
9666
9671
9675
9680
93
9685
9689
9694
9699
9703
9708
9713
9717
9722
9727
94
9731
9736
9741
9745
9750
9754
9759
9763
9768
9773
95
9777
9782
9786
9791
9795
9800
9805
9809
9814
9818
96
9823
9827
9832
9836
9841
9845
9850
9854
9859
9863
97
9868
9872
9877
9881
9886
9890
9894
9899
9903
9908
98
9912
9917
9921
9926
9930
9934
9939
9943
9948
9952
99
9956
9961
9965
9969
9974
9978
9983
9987
9991
9996
历史对数方法是苏格兰的 Merchiston 男爵约翰·纳皮尔1614年在书《Mirifici Logarithmorum Canonis Descriptio》中首次公开提出的,(Joost Bürgi 独立的发现了对数;但直到 Napier 之后四年才发表)。这个方法对科学进步有所贡献,特别是对天文学,使某些繁难的计算成为可能。在计算器和计算机发明之前,它持久的用于测量、航海、和其他实用数学分支中。