王朝百科
分享
 
 
 

向量积

王朝百科·作者佚名  2010-02-13  
宽屏版  字体: |||超大  

向量积

也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量垂直。

定义

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。叉积可以被定义为:

|向量a×向量b|=|a||b|sin<a,b>

在这里θ表示和之间的角度(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。

这个定义有一个问题,就是同时有两个单位向量都垂直于和:若满足垂直的条件,那么也满足。

“正确”的向量由向量空间的方向确定,即按照给定直角坐标系 (i, j, k) 的左右手定则。若 (i, j, k) 满足右手定则,则 (a, b, a × b) 也满足右手定则;或者两者同时满足左手定则。

一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。

向量积 c=a×b=|a| |b|sin(a,b的夹角)将两向量的起点置于同一点,则两有向线段夹的角就叫两向量所成的角!

c的方向垂直于a与b所决定的平面,c的指向按右手规则从a转向b来确定.

a×b=(aybz-azby)i+(azbx-axbz)j+(axby-aybx)k,为了帮助记忆,利用三阶行列式,写成

|i j k|

|ax ay az|

|bx by bz|

b×a= -a×b 右手规则

三角形ABC的面积=1/2*abs(AB×AC)

性质

几何意义

叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积。进一步就是说,三重积可以得到以 a,b,c 为边的平行六面体的体积。

代数性质

反交换律:

a × b = -b × a

加法的分配律:

a × (b + c) = a × b + a × c

与标量乘法兼容:

(ra) × b = a × (rb) = r(a × b)

不满足结合律,但满足 雅可比恒等式:

a × (b × c) + b × (c × a) + c × (a × b) = 0

分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的 R3 构成了一个李代数。

两个非零向量 a 和 b 平行,当且仅当 a × b = 0

拉格朗日公式

这是一个著名的公式,而且非常有用:

a × (b × c) = b(a · c) − c(a · b),

可以简单地记成“BAC - CAB”。这个公式在物理上简化向量运算非常有效。需要注意的是,这个公式对微分算子不成立。

这里给出一个和梯度相关的一个情形:

这是一个霍奇拉普拉斯算子的霍奇分解 的特殊情形。

另一个有用的拉格朗日恒等式是:

这是一个在四元数代数中范数乘法 | vw | = | v | | w | 的特殊情形。

矩阵形式

给定直角坐标系的单位向量 i,j,k 满足下列等式:

i × j = k j × k = i k × i = j

通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设

a = a1i + a2j + a3k = [a1, a2, a3]

b = b1i + b2j + b3k =

a × b = [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1]

上述等式可以写成矩阵的行列式的形式:

叉积也可以用四元数来表示。注意到上述 i,j,k 之间的叉积满足四元数的乘法。一般而言,若将向量 [a1, a2, a3] 表示成四元数 a1i + a2j + a3k,两个向量的叉积可以这样计算:计算两个四元数的乘积得到一个四元数,并将这个四元数的实部去掉,即为结果。更多关于四元数乘法,向量运算及其几何意义请参见四元数与空间旋转。

高维情形

七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。

七维叉积具有与三维叉积相似的性质:

双线性性:

x × (ay + bz) = ax × y + bx × z

(ay + bz) × x = ay × x + bz × x.

反交换律:

x × y + y × x = 0

同时与 x 和 y 垂直:

x · (x × y) = y · (x × y) = 0

拉格朗日恒等式

|x × y|2 = |x|2 |y|2 − (x · y)2.

不同于三维情形,它并不满足雅可比恒等式:

x × (y × z) + y × (z × x) + z × (x × y) ≠ 0

应用

在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。

求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格&#8203;十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有