直线和圆相交
直线和圆有两个公共

点时,叫做直线和圆相交。
根据圆的公式 :(x-a)^2 + (x-b)^2 = r^2
和直线公式 : y=kx+c (存在k)
联立后得:(1+k^2)x^2 + 2(c-a-b)x + a^2 + (c-b)^2 - r^2=0;
为相交两点方程。
求解此方程:
x = (2(a+b-c) ± (√Δ) ) / 2(1 + k^2)
其中 Δ=4(c-b-a)^2 - 4(1+k^2)(c-b-a)
几种形式的圆方程
标准方程::(x-a)^2 + (x-b)^2 = r^2
一般方程:x^2+y^2+Dx+Ey+F=0
直径是方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0
联立直线和圆方程时,可以采用这几种形式的圆方程。对于不同的问题,采用不同的方程形式可使计算得到简化。