垂心定理

三角形的三条高交于一点。该点叫做三角形的垂心。
其性质包括:
1.三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2.垂心外心内心三心共线。
3.垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
已知:ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F
求证:CF⊥AB
证明:
连接DE
∵∠ADB=∠AEB=90度
∴A、B、C、D到AB中点距离相等
∴A、B、D、E四点共圆 (以AB为直径的圆)
同理C、D、O、E到OC中点距离相等
∴C、D、O、E四点共圆 (以OC为直径的圆)
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
因此,垂心定理成立!