球坐标系

王朝百科·作者佚名  2010-02-28  
宽屏版  字体: |||超大  

球坐标系

球坐标是一种三维坐标。分别有原点、方位角、仰角、距离构成。

设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为

0 ≤ r < +∞,

0 ≤φ≤ 2π,

0 ≤θ≤ π.

r = 常数,即以原点为心的球面;

θ= 常数,即以原点为顶点、z轴为轴的圆锥面;

φ= 常数,即过z轴的半平面。

其中

x=rsinθcosφ

y=rsinθsinφ

z=rcosθ

在球坐标系中,沿基矢方向的三个线段元为:

dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ

球坐标的面元面积是:

dS=dl(θ)* dl(φ)=r^2*sinθdθdφ

体积元的体积为:

dV=dl(r)*dl(θ)*dl(φ)=r^2*sinθdrdθdφ

球坐标系在地理学、天文学中有着广泛应用.在测量实践中,球坐标中的θ角称为被测点P(r,φ,θ)的方位角,90°-φ成为高低角

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有